
ar
X

iv
:1

70
6.

01
39

9v
3 

 [
cs

.C
L

] 
 2

1 
D

ec
 2

01
7

Language Generation with Recurrent Generative Adversarial Networks
without Pre-training

Ofir Press∗1, Amir Bar∗1,2, Ben Bogin∗1,3

Jonathan Berant1, Lior Wolf1,4

1 School of Computer Science, Tel-Aviv University
2 Zebra Medical Vision 3 IBM Research 4 Facebook AI Research

ofir.press@cs.tau.ac.il

Abstract

Generative Adversarial Networks (GANs)

have shown great promise recently in im-

age generation. Training GANs for lan-

guage generation has proven to be more

difficult, because of the non-differentiable

nature of generating text with recurrent

neural networks. Consequently, past

work has either resorted to pre-training

with maximum-likelihood or used con-

volutional networks for generation. In

this work, we show that recurrent neural

networks can be trained to generate text

with GANs from scratch using curriculum

learning, by slowly teaching the model to

generate sequences of increasing and vari-

able length. We empirically show that our

approach vastly improves the quality of

generated sequences compared to a convo-

lutional baseline. 1

1 Introduction

Generative adversarial net-

works (Goodfellow et al., 2014) have achieved

state-of-the-art results in image genera-

tion (Goodfellow et al., 2014; Radford et al.,

2015; Arjovsky et al., 2017; Gulrajani et al.,

2017). For text generation, training GANs

with recurrent neural networks (RNNs) has

been more challenging, mostly due to the

non-differentiable nature of generating discrete

symbols. Consequently, past work on using

GANs for text generation has been based on

pre-training (Yu et al., 2016; Li et al., 2017;

Yang et al., 2017; Wu et al., 2017; Liang et al.,

2017; Zhang et al., 2016; Shetty et al., 2017)

∗

Denotes equal contribution. Author ordering determined by coin flip.
1
Code for our models and evaluation methods is available at

https://github.com/amirbar/rnn.wgan

or joint training (Lamb et al., 2016; Che et al.,

2017) of the generator and discriminator with a

supervised maximum-likelihood loss.

Recently, two initial attempts to generate

text using purely generative adversarial train-

ing were conducted by Gulrajani et al. (2017)

and Hjelm et al. (2017). In these works, a con-

volutional neural network (CNN) was trained to

produce sequences of 32 characters. This CNN

architecture is fully differentiable, and the authors

demonstrated that it generates text at a reason-

able level. However, the generated text was still

filled with spelling errors and had little coherence.

RNNs are a more natural architecture for language

generation, since they condition each generated

character on the entire history, and are not con-

strained to generating a fixed number of charac-

ters.

In this paper, we extend the setup

of Gulrajani et al. (2017) and present a method

for generating text with GANs. Our main con-

tribution is a model that employs an RNN for

both the generator and discriminator, similar to

current state-of-the-art approaches for language

generation (Sutskever et al., 2011; Mikolov, 2012;

Jozefowicz et al., 2016). We succeed in training

the model by using curriculum learning (Elman,

1993; Bengio et al., 2009; Ranzato et al., 2015):

At each stage we increase the maximal length of

generated sequences, and train over sequences of

variable length that are shorter than that maximal

length. In addition, we aid the model by feeding

it with ground truth characters before generation.

We show that these methods vastly improve

the quality of generated sequences. Sequences

contain substantially more n-grams from a de-

velopment set compared to those generated by a

CNN, and generation generalizes to sequences

that are longer than the sequences the model was

trained on.

http://arxiv.org/abs/1706.01399v3
https://github.com/amirbar/rnn.wgan


2 Motivation

While models trained with a maximum-likelihood

objective (ML) have shown success in language

generation (Sutskever et al., 2011; Mikolov, 2012;

Jozefowicz et al., 2016), there are drawbacks to

using ML, that suggest training with GANs. First,

using ML suffers from “exposure bias”, that is, at

training time the model is exposed to gold data

only, but at test time it observes its own predic-

tions, and thus wrong predictions quickly accumu-

late, resulting in bad text generation.

Secondly, the ML loss function is very strin-

gent. When training with ML, the model aims to

allocate all probability mass to the i-th character

of the training set given the previous i− 1 charac-

ters, and considers any deviation from the gold se-

quence as incorrect, although there are many pos-

sible sequences given a certain prefix. GANs suf-

fer less from this problem, because the objective

is to fool the discriminator, and thus the objective

evolves dynamically as training unfolds. While

at the beginning the generator might only gener-

ate sequences of random letters with spaces, as

the discriminator learns to better discriminate, the

generator will evolve to generate words and after

that it may advance to longer, more coherent se-

quences of text. This interplay between the dis-

criminator and generator helps incremental learn-

ing of text generation.

3 Preliminaries

Gulrajani et al. (2017) and Hjelm et al. (2017)

trained a purely generative adversarial model

(without pre-training) for character-level sen-

tence generation. We briefly review the setup

of Gulrajani et al. (2017), who use the Improved

Wasserstein GAN objective (Arjovsky et al.,

2017; Gulrajani et al., 2017), which we employ as

well. Hjelm et al. (2017) have a similar setup, but

employ the Boundary-Seeking GAN objective.

The generator G in Gulrajani et al. (2017) is a

CNN that transforms a noise vector z ∼ N(0, 1)
into a matrix M ∈ R

32×V , where V is the size of

the character vocabulary, and 32 is the length of

the generated text. In this matrix the i-th row is a

probability distribution over characters that repre-

sents a prediction for the i-th output in the charac-

ter sequence. To decode a sequence, they choose

the highest probability character in each row. The

discriminator D is another CNN that receives a

matrix as input and needs to determine if this ma-

trix is the output of the generator G or sampled

from the real data (where each row in the matrix

now is a one-hot vector). The loss of the Improved

WGAN generator is:

LG = −Ex̃∼Pg
[D(x̃)],

and the loss of the discriminator is:

LD = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]

+ λEx̂∼Px̂
[(‖∇x̂D(x̂)‖2 − 1)2],

Where Pr is the data distribution and Pg is the gen-

erator distribution implicitly defined by x̃ = G(z).
The last term of the objective controls the com-

plexity of the discriminator function and penalizes

functions that have high gradient norm, that is,

change too rapidly. Px̂ is defined by sampling uni-

formly along a straight line between a point sam-

pled from the data distribution and a point sampled

from the generator distribution.

A disadvantage of the generators

in Gulrajani et al. (2017) and Hjelm et al.

(2017) is that they use CNNs for generation, and

thus the i-th generated character is not directly

conditioned on the entire history of i−1 generated

characters. This might be a factor in the frequent

spelling mistakes and lack of coherence in the

output of these models. We now present a model

for language generation with GANs that utilizes

RNNs, which are state-of-the-art in language

generation.

4 Recurrent Models

We employ a GRU (Cho et al., 2014) based RNN

for our generator and discriminator. The gener-

ator is initialized by feeding it with a noise vec-

tor z as the hidden state, and an embedded start-

of-sequence symbol as input. The generator then

generates a sequence of distributions over charac-

ters, using a softmax layer over the hidden state at

each time step.

Because we want to have a fully-differentiable

generator, the input to the RNN generator at each

time step is not the most probable character from

the previous time step. Instead we employ a con-

tinuous relaxation, and provide at time step i the

weighted average representation given by the out-

put distribution of step i − 1. More formally, let

αc
i−1 be the probability of generating the character

c computed at time step i − 1, and let φ(c) be the

embedding of the character c, then the input to the



Table 1: Samples and evaluation of the baseline model from Gulrajani et al. (2017).

Samples %-IN-TEST-n
1 2 3 4

Official marth Damilicon was eng

The later , trading touse of the

First killed sye of Nondon , and

64.4 25.9 5.1 0.4

GRU at time step i is
∑

c α
c
i−1φ(c). This is fully

differentiable compared to argmaxφ(c) α
c
i−1. We

empirically observe that the RNN quickly learns

to output very skewed distributions.

The discriminator is another GRU that receives

a sequence of character distributions as input, ei-

ther one-hot vectors (for real data) or softer dis-

tributions (for generated data). Character embed-

dings are computed from the distributions and fed

into the GRU. The discriminator then takes the fi-

nal hidden state and feeds it into a fully connected

layer which outputs a single number, representing

the score that the discriminator assigns to the in-

put. The models are trained with the aforemen-

tioned Improved WGAN objective (Section 3).

An advantage of a recurrent generator compared

to the convolutional generator of Gulrajani et al.

(2017) and Hjelm et al. (2017) is that can output

sequences of varying lengths, as we empirically

show in Section 5.

Our baseline model trains the generator and dis-

criminator over sequences of length 32, similar to

how CNNs were trained in Gulrajani et al. (2017).

We found that training this baseline was difficult

and resulted in nonsensical text. We now present

three extensions that stabilize the training process.

Curriculum Learning (CL) In this extension,

we start by training on short sequences and then

slowly increase sequence length. In the first train-

ing stage, the generator G generates sequences of

length 1, and the discriminator D receives real and

generated sequences of length 1 as input. Then,

the generator generates sequences of length 2 and

the discriminator receives sequences of length 2.

We increase sequence length in this manner until

the maximum length of 32 characters.

Variable Length (VL) Here, we define a max-

imum length l, and generate during training se-

quences of every length ≤ l in every batch. With-

out curriculum learning, this amounts to training

G and D in every batch with sequences of length

i, 1 ≤ i ≤ 32. With curriculum learning, we gen-

erate at each step sequences of length i, 1 ≤ i ≤ l,

and slowly increase l throughout training.

Teacher Helping (TH) Finally, we propose a

procedure where we help the generator learn

to generate long sequences by conditioning on

shorter ground truth sequences. Recall that in

our baseline, the generator generates an entire se-

quence of characters that are fed as input to the

discriminator. Here, when generating sequences

of length i, we feed the generator a sequence of

i−1 characters, sampled from the real data. Then,

the generator generates a distribution over char-

acters for the final character, which we concate-

nate to the real characters and feed as input to the

discriminator. The discriminator observes a se-

quence of length i composed of i − 1 real char-

acters and one character that is either real or gen-

erated. This could be viewed as a conditional

GAN (Mirza and Osindero, 2014), where the first

i − 1 characters are the input and the final char-

acter is the output. Note that this extension may

suffer from exposure bias, similar to the ML ob-

jective, and we plan to address this problem in fu-

ture work.

5 Results

To directly compare to Gulrajani et al. (2017), we

follow their setup and train our models on the Bil-

lion Word dataset (Chelba et al., 2013). We evalu-

ate by generating 640 sequences from each model

and measuring %-IN-TEST-n, that is, the propor-

tion of word n-grams from generated sequences

that also appear in a held-out test set. We evaluate

these metrics for n ∈ {1, 2, 3, 4}. Our goal is to

measure the extent to which the generator is able

to generate real words with local coherence.

In contrast to Arjovsky et al. (2017)

and Gulrajani et al. (2017), where the gener-

ator is trained once for every 10 training iterations

of the discriminator, we found that training the

generator for 50 iterations every 10 training

iterations of the discriminator resulted in superior

performance. In addition, instead of using noise

vectors sampled from the N(0, 1) distribution as

in Gulrajani et al. (2017), we sample noise vectors

from the N(0, 10) distribution, since we found

this leads to a greater variance in the generated



Table 2: Samples and evaluation of our models with an RNN generator and discriminator and various extensions. For the
CL+VL+TH model we present results for generated sequences of length 32 and length 64.

CL VL TH Samples %-IN-TEST-n
1 2 3 4

✗ ✗ ✗

???ccccccccccccccccccccccccccccc

&&;?x??????++++++?+?+?++++++++++

?vVVV5--5-?-?-?-?-?-?-?s?-ss{6?
28.8 3.7 0.0 0.0

✗ ✓ ✗

??nnnnnnnnnnnnnnnnnneeeee mfe mf

rerrrrrrrr e an e ao e a e ho e

"h"p t t t t t t t ’ t h e e a

80.6 8.6 0.0 0.0

✓ ✗ ✗

1x????????????? ????????????????

Bonererennerere ?Sh???????orann

unngenngHag g g?e?????????????

27.0 7.9 2.0 0.0

✓ ✓ ✗

The prope prof ot prote was the

Wy rronsy ales ale a Claie of th

Price was one of the plaids rom

68.1 24.5 4.4 0.5

✗ ✓ ✓

The increase is a bilday in the

Sment used a last give you last

She was the intervice is orced t

79.4 44.6 11.5 0.7

✓ ✓ ✓

Republicans friends like come ti

Researchers have played people a

The Catalian Office of the docum

87.7 54.1 19.2 3.8

✓ ✓ ✓ Sequences of length 64. Examples in Table 3. 87.5 51.3 15.1 1.7

Table 3: Samples of length 64 generated by the CL+VL+TH model.

Marks live up in the club comes the handed up moved to a brief d

The man allowed that about health captain played that alleged to

If you have for the past said the police say they goting ight n

However , he ’s have constance has been apparents are about home

The deal share is dipled that a comments in Nox said in one of t

Like a sport released not doing the opposition overal price tabl

samples when using RNNs.

In all our experiments, we used single layer

GRUs for both the discriminator and generator.

The embedding dimension and hidden state di-

mension are both of size 512.

Following Gulrajani et al. (2017), we train all

our models on sequences whose maximum length

is 32 characters. Table 1 shows results of the

baseline model of Gulrajani et al. (2017), and Ta-

ble 2 presents results of our models with various

combinations of extensions (Curriculum Learning,

Variable Length, and Teacher Helping). Our best

model combines all of the extensions and outper-

forms the baseline by a wide margin on all metrics.

The samples show that models that used both

the Variable Length and Teacher Helping exten-

sions performed better than those that did not.

This is also backed by the empirical evaluation,

which shows that 3.8% of the word 4-grams gen-

erated by the CL+VL+TH model also appear in

the held-out test set. The weak performance of the

curriculum learning model without the other ex-

tensions shows that curriculum learning by itself

does not lead to better performance, and that train-

ing on variable lengths and with Teacher Helping

is important. We note that curriculum learning did

not perform well at generating sequences of length

32, but did perform well at generating sequences

of shorter lengths earlier in the training process.

For example, the model that used only curricu-

lum learning had a %-IN-TEST-1 of 79.9 when

it was trained on sequences of length 5. This de-

creased to 59.7 when the model reached sequences

of length 10, and continued decreasing until train-

ing stopped. This also shows the importance of

Variable Length and Teacher Helping.

Finally, to check the ability of our models to

generalize to longer sequences, we generated se-

quences of length 64 with our CL+VL+TH model,

which was trained on sequences of up to 32 char-

acters (Table 3). We then evaluated the generated

text, and this evaluation shows that there is a small

degradation in performance (Table 2).

6 Conclusion

We show for the first time an RNN trained with a

GAN objective that learns to generate natural lan-

guage from scratch. Moreover, we demonstrate

that our model generalizes to sequences longer

than the ones seen during training. In future work,



we plan to apply these models to tasks such as im-

age captioning and translation, comparing them to

models trained with maximum likelihood.

References

M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasser-
stein GAN. arXiv preprint arXiv:1701.07875 .

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning. ACM, pages 41–48.

Tong Che, Yanran Li, Ruixiang Zhang, R. Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Ben-
gio. 2017. Maximum-likelihood augmented discrete
generative adversarial networks. arXiv preprint
arXiv:1702.07983 .

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005 .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Jeffrey L Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition 48(1):71–99.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, Curran Associates, Inc., pages 2672–
2680.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron Courville. 2017. Im-
proved training of wasserstein gans. arXiv preprint
arXiv:1704.00028 .

R Devon Hjelm, Athul Paul Jacob, Tong Che,
Kyunghyun Cho, and Yoshua Bengio. 2017.
Boundary-seeking generative adversarial networks.
arXiv preprint arXiv:1702.08431 .

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville,
and Y. Bengio. 2016. Professor Forcing: A New
Algorithm for Training Recurrent Networks. arXiv
preprint arXiv:1610.09038 .

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter,
and Dan Jurafsky. 2017. Adversarial learning
for neural dialogue generation. arXiv preprint
arXiv:1701.06547 .

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang
Gan, and Eric P. Xing. 2017. Recurrent topic-
transition GAN for visual paragraph generation.
arXiv preprint arXiv:1703.07022 .

Tomáš Mikolov. 2012. Statistical language models
based on neural networks. Ph.D. thesis, Brno Uni-
versity of Technology.

Mehdi Mirza and Simon Osindero. 2014. Condi-
tional generative adversarial nets. arXiv preprint
arXiv:1411.1784 .

Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised representation learning with
deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434 .

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732 .

Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hen-
dricks, Mario Fritz, and Bernt Schiele. 2017. Speak-
ing the same language: Matching machine to hu-
man captions by adversarial training. arXiv preprint
arXiv:1703.10476 .

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). pages
1017–1024.

L. Wu, Y. Xia, L. Zhao, F. Tian, T. Qin, J. Lai, and T.-Y.
Liu. 2017. Adversarial Neural Machine Translation.
arXiv preprint arXiv:1704.06933 .

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2017.
Improving neural machine translation with condi-
tional sequence generative adversarial nets. arXiv
preprint arXiv:1703.04887 .

Lantao Yu, Weinan Zhang, Jun Wang, and Yong
Yu. 2016. Seqgan: Sequence generative adver-
sarial nets with policy gradient. arXiv preprint
arXiv:1609.05473 .

Yizhe Zhang, Zhe Gan, and Lawrence Carin. 2016.
Generating text via adversarial training. In NIPS
Workshop on Adversarial Training.


