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Abstract Breast cancer is the most prevalent malignancy in the
US and the third highest cause of cancer-related mortality world-
wide. Regular mammography screening has been attributed with
doubling the rate of early cancer detection over the past three
decades, yet estimates of mammographic accuracy in the hands
of experienced radiologists remain suboptimal with sensitivity
ranging from 62 to 87% and specificity from 75 to 91%.
Advances in machine learning (ML) in recent years have dem-
onstrated capabilities of image analysis which often surpass those
of human observers. Here we present two novel techniques to
address inherent challenges in the application of ML to the do-
main of mammography.We describe the use of genetic search of
image enhancement methods, leading us to the use of a novel
form of false color enhancement through contrast limited adap-
tive histogram equalization (CLAHE), as a method to optimize
mammographic feature representation. We also utilize dual deep
convolutional neural networks at different scales, for classifica-
tion of full mammogram images and derivative patches com-
bined with a random forest gating network as a novel architec-
tural solution capable of discerningmalignancywith a specificity
of 0.91 and a specificity of 0.80. To our knowledge, this repre-
sents the first automatic stand-alone mammography malignancy
detection algorithm with sensitivity and specificity performance
similar to that of expert radiologists.

Keywords Deep learning .Machine learning . Convolutional
neural networks .Mammography

Introduction

Breast cancer is the most prevalent malignancy in the US,
accounting for over 230,000 new diagnoses and approximate-
ly 40,000 deaths annually [1]. Regular mammography screen-
ing has been attributed with doubling the rate of early cancer
detection and has been credited with decreasing breast cancer
mortality by up to 30% over the past three decades [2, 3].
Estimates of sensitivity and specificity in the hands of experi-
enced radiologists currently range from 62 to 87% and 75 to
91%, respectively [4–8].

Computer aided detection (CAD) for mammography was
first approved by the Food and Drug Administration (FDA) in
1998. CAD software functions essentially as a Bsecond read-
er^ to the interpreting radiologist. Early studies demonstrated
increases of 19–23% in breast cancer detection rate with CAD
utilization, resulting in reimbursement qualification and wide-
spread adoption in the US [9–11]. Despite subsequent up-
grades in traditional CAD algorithms, its clinical utility has
remained controversial. The most definitive study to date
pooled data from mammography registries of over 500,000
mammograms performed between 2003 and 2009 and found
no added benefit of CAD in cancer detection or diagnostic
accuracy for screening mammography [5].

Traditional CAD algorithms deploy conventional computer
vision technologies based upon detection of hand-crafted im-
aging features broadly categorized into masses or micro-cal-
cifications. In contrast, current machine learning (ML)
methods are based upon feature discovery within samples of
ground truth-validated images. ML has made substantial ad-
vances in feature recognition in natural-world images, often
superseding that of human observers. Fundamental differ-
ences of data acquisition and content have limited the trans-
ferability of ML image algorithms to the domain of radiology.
We present a ML based mammographic malignancy detection
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algorithm which utilizes novel data enhancement techniques
and analytics architecture to achieve stand-alone accuracy
similar to that reported for expert radiologists.

Data

Datasets were created using digital mammography images
from The Digital Database for Screening Mammography
(DDSM), which includes more than 6000 digital mammo-
graphic images evenly split between those with and without
malignancy [12] and the proprietary Zebra Mammography
Dataset (ZMDS), a dataset of 1739 full-sized mammograms
divided into training, validation, and Buntouched^ test sets
comprised of nearly equal numbers of malignant and nonma-
lignant samples.

Both databases represent a random variation of mammo-
graphic breast density. The Bpositive^ samples contain malig-
nancy and Bnegative^ samples represent images of either nor-
mal breast tissue or tissue with definitively benign anomalies.
Positive ground truth was defined by biopsy proven patholo-
gy. Negative samples were defined by pathology or at least
2 years of stable imaging follow-up.

The inclusion of a distinct benign class allowed for the
generation of a tri-categorical network with the goal of differ-
entiating not only normal from abnormal breast tissue, but
further classifying abnormalities into those which are suspi-
cious for malignancy and those which are not.

Using the DDSM and ZMDS, we trained experimental
network designs, testing single image sensitivity, and specific-
ity against a test set. Initial pathfinding experiments were de-
signed to define the optimal preprocessing enhancement
methods and parameters, testing combinations of parameter
alterations as input to ensembles of shallow convolutional
neural networks (CNN) [13] [14]. CNNs are a powerful means
of extracting features from images (among other applications)
and ultimately in performing automatic image classification.
The depth of a CNN refers to the number of processing layers
which input data must go through before the final layer of
extracted features is passed to the discriminating classifier at
the top of the network. We utilized a Bshallow^ network of six
layers to identify optimal pre-processing measures. Pre-
processed data was then input into the dual deep (greater than
20 layers) CNN networks. Searching the space of possible

preprocessing methods directly against such a deep network
would have prohibitively high computational cost.

The parameter space (the set of all possible settings for the
parameters) of the enhancement parameters, which described
the combination of image processes, was searched by evolu-
tionary selection of the ensemblemembers.Multiple functions
were selected in the vast parameter space, each with a selec-
tion of inputs and arguments. The space was permutation de-
pendent with specific function ordering, as the output of one
function affected each subsequent function.

Most experiments used a maximum of eight possible pre-
processing manipulations, including empty functions
(NoOps), indicating a redundant portion to the Bgenome.^
The optimal pre-processing combinations were selected by
an evolutionary process: when a new shallow CNN with its
associated input preprocessing method improved the ensem-
ble’s top 1 precision, the network was added as a member. The
genome-like description of its preprocessing method was
added to a pool of parameter strings from which subsequent
candidate members would be bred (the parameter string de-
scribing the input preprocessing method, constructed by splic-
ing sections of previously successful preprocessing genomes).

Common computer vision methods were possible func-
tions the Bgenome^ could express. The genome also determin-
ing the parameters used for each function, whether to take the
working memory buffer image, or the original image as input,
and how to merge result to the working memory. Some
methods available to the genetic preprocessing mechanism
included the following:

& gaussian blur
& Otsus threshold masking
& OpenCV 2’s Canny edge detection
& CLAHE as implemented by OpenCV 2, with window and

clipping parameters both chosen by the genome.
& masking by hue matching (hue and threshold determined

by the genome)
& masking by shannon entropy threshold

Note that some functions were masking functions. These
masks were then potentially used by other functions to apply
processing to a selected region defined by that mask.

The resulting preprocessing evolved toward some common
processing patterns. Initial experiments were performed on the
less challenging task of classifying birds (Fig. 1). It was shown

Fig. 1 In generational order from left to right, the same image of a red kite is transformed by the current generation of image preprocessing, created by
the evolutionary system described. Images courtesy of PT and Prof. Abigail Morrison

500 J Digit Imaging (2017) 30:499–505



that sophisticated image manipulations could emerge from
this process.

For our intended challenge of breast malignancy risk clas-
sification and localization, pathfinding experiments identified
contrast limited adaptive histogram equalization (CLAHE) as
consistently among the most useful enhancements during en-
semble evolution. Unprocessed shallow network ensembles
yielded accuracy of 86% in classifying malignant from non-
malignant mammograms. In comparison, the addition of false
color enhancement across the RGB spectrum by employing

broad window resolution with low clipping value at the red
channel, intermediate at the green and fine resolution with the
highest limiting at the blue (see Scheme 1, Figs. 2 and 3). This
resulted in substantially better accuracy of 92% in classifying
malignant vs nonmalignant regions of interest with a shallow
CNN.

We refer to the preprocessing method arrived at as spread
parameter contrast limited adaptive histogram equalization.
While more work could be carried out to search for the optimal
hyper parameters of this method, we settled on a process that can

Green Inputs transformed by CLAHE with 
parameter configurations 
differentiated across the 3 color 
channels, as genetic search suggested.

Blue No image preprocessing applied

Scheme 1 Comparing accuracy
of unenhanced and enhanced
input training. Accuracy score
against training time for region of
interest binary classification of
malignancy risk (p < 0.005)

Fig. 2 Enhanced inputs: normal
window patch (a), window patch
containing malignancy (b),
normal full image (c), and full
image containing malignancy and
scarring (d). All images shown
are from different patients
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be descr ibed by pseudocode snippet 1:# pseudo
c o d e : r e d = C L AH E ( s a m p l e _ i m a g e , s i z e = 2 ,
clipping=8)green=CLAHE(sample_image, size=4,
cl ipping=4)blue=CLAHE(sample_image, s ize=8,
clipping=2)input_image=merge(red, green, blue)

To enable lesion localization, we generated a separate dataset
comprised of image patches from reader annotations. A sliding
window approach would be taken to perform coarse localization
of pathologically indicative regions. Each full breast image
yielded approximately 100–400 sliding windows, with window
traversal stridesmeasuring 1/5 of thewindow’swidth (see Fig. 4).

Inference would be run against these windows as regions of
interest (RoIs). 512 × 512 pixel RoIs were downsampled and
processed into 299 × 299 × 3 inputs, to suit the standard input
for inception_v3 (described further below). Taking a larger
window and downsampling were done simply to aid speed
of processing, whilst retaining a good level of resolution.

Unlike the full images (which are more strongly isometric),
the RoIs could be heavily augmented with flip and rotation,
giving an eightfold augmentation for the detection window
data. Two rounds of hard negative mining were performed
to improve specificity of the RoI network. Hard negative min-
ing refers to iterative training upon false-positive (FP) results
with the aim of improving specificity. Specificity is particu-
larly important for the RoI network as hundreds of inferences
occur in the assessment of each full scale image.

Model

A model architecture was designed in light of the pathfinding
experiments described above. Those experiments supporting
the following assertions:

& Preprocessing using SPCLAHE is beneficial to predictive
performance.

& Pathology can be discerned both at the small, window
scale and at the large full image scale.

& The shallow CNNs tested, alone or in ensembles, were not
performant enough to achieve useful advances in perfor-
mance, based on the experiments run.

Fig. 3 Varying the CLAHE window and clipping parameters differently
across the color channels affords useful enhancement across a wider
range of fidelity resolutions, across the majority of the breast. Affording
sharper structural enhancement over more scales of resolution and
windows of tonal range

Fig. 4 Illustration showing the dimensions of the sliding window region,
traversed across the full image, used to generate the map of regions of
interest, and eventually their local probability of risk
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The system architecture chosen is depicted in Fig. 5. Each
mammogram underwent pre-processing and enhancement as
both a single full image and as a set of patches cropped in a
sliding window traversal of the full image, all standardized to
299 × 299 × 3, as described above, to suit the expected input
dimensions for the chosen model. Full images and derived
patches served as input for two respective independent deep
CNN model instances, each based upon the Google
inception_v3 model and pre-trained on ImageNet data.

Inception_v3 was chosen to optimize depth, stability, and
availability of densely pretrained network snapshots. We
employed a transfer-learning approach, benefiting from fea-
tures learned by lower layers while fine tuning existing snap-
shots to the present mammographic challenge.

Network output from both inception_v3 instances was input
to a random forest classificationmethod in order to combine both
the full scale and patch-based assessments into a single prediction
of class: Bsuspicious^ or Bnon-suspicious.^ This approach per-
mitted variations of the preprocessing methods for the full image
vs the patches and also allowed independent hyper-parameter
alterations to best suit each of the two image scales.

To find the highest performing network (which we refer to
as the Bultimate classifier^), we concatenated the RoI network
outputs and full image network outputs to train and run infer-
ence for a final prediction of risk. This final prediction from

the ultimate classifier was thus dependent on both window
scale and full image scale features.

To discover a suitable ultimate classifier, we applied each
relevant classifier currently available in SciKit Learn, which
was capable of giving a pseudo-probabilistic prediction (e.g.,
softmax score) of binary classification.While handcrafted log-
ic produced similar results, we felt this logic was effective but
unprincipled. We thus opted for a tried and tested general
purpose discriminating classifier. This lead us to the random
forest [15], as implemented in Scikit Learn.

The Bvalidation set^ (as opposed to the training set or final
test set) was used to train the ultimate classifier, since the
training set (used to train the full image and RoI networks)
achieved near 100% accuracy after training when tested. The
untouched test set remained unused for the final validation
tests of the entire system.

Methods

Data was split as described above. Care was taken not to
include images from any patient in more than one subset
(e.g., for patient with images in the training set, no images
existed in the test or validation sets).

Fig. 5 System architecture
demonstrating full mammogram
and patch input into dual deep
CNN instances with an additional
final random forest analytic
component

Table 1 Performance metrics—by image and by case stats and metrics.
These are based on the softmax result from the ultimate classifier being
above or below a chosen thresholdΘ per image. Or for per case, the mean

of the softmax of both images for a given laterality are compared to the
laterality threshold

Sensitivity Specificity ROC AUC F1 Θ FP FN TP TN

By image 0.901 0.783 0.922 0.787 0.34 N/A 106 27 246 382

By case 0.910 0.804 0.922 0.783 0.34 0.38 78 17 171 320
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It is worth noting that image samples were of standard mam-
mogram screening studies, i.e., low dose x-ray imaging at width
and high resolutions between 1 K and 5 K pixels. Sixteen-bit
depth was available in the original images, which were reduced
to eight-bit RGB during preprocessing and then presented to the
receptive field as 32-bit floats, as the network model expects.
This accepted loss in bit depth resolution was a compromise
made to take advantage of the OpenCV CLAHEmethod, which
at the time did not support 32-bit float grayscale images.

The full images were preprocessed as described above. The
network was initiated with a checkpoint, pretrained on
ImageNet [16]. The full image network then was trained on
the training set until loss plateaued. Any parameter changes
were made by retesting against the validation set (never
against the test set) thereby avoiding the risk of information
leakage to the ultimate test set.

The ROI images were preprocessed and, for the training set
only, augmented, as described above. The ROI network then
trained on the augmented, processed set until loss plateaued.
This network also began with a checkpoint, pre-trained on
ImageNet. The checkpoint being taken from the open source
TensorFlow code repository.

Finally, the random forest classifier was trained, taking the
outputs of the two deep CNNs and the common statistical
attributes of the distribution of sliding window scores. This
too was performed against the validation set. Final scores were
validated for the untouched test set and defined for full image,
RoI, and combined data.

Results

Each mammographic image was classified as Bsuspi-
cious^ or Bnon-suspicious^ for malignancy based upon
the random forest’s softmax score being above or below
a chosen threshold. For the ROC curve, this threshold
Θ is incremented from 0.0 to 1.0 by steps of 0.01.
Results were assessed per image and per study separately—
keeping in mind that a typical mammographic study includes
two semi-orthogonal views of each breast. The study-level
categories one, both or neither breast AS suspicious for
malignancy.

Results are summarized in Table 1 and in the ROC curve
(Scheme 2.). The overall stand-alone area under the curve for
the ROC curve is 0.922. This is similar to those reported for
contemporary single reader digital mammography and consider-
ably above state of the art for stand-alone software performance
[17].

At a sensitivity of 0.91 (above the mean for expert
radiologists), specificity by image was 0.80. This is also
similar to those reported for expert radiologists with or
without CAD [5].

Discussion and Conclusions

Digital mammography is the foundation of breast imaging
practice and the only imaging modality to demonstrate mor-
tality reduction with screening program [2, 3]. However,
mammography continues to underperform with variable sen-
sitivity and specificity, evenwith widespread CAD implemen-
tation [4–8]. Supplemental screening modalities, including
digital breast tomosynthesis (DBT) demonstrate only modest
improvement in cancer detection, with sensitivity ranging
from 77 to 83% [18, 19]. Screening breast ultrasound also
demonstrates modest improvement in cancer detection with
variable sensitivity, but with low PPV (positive predictive
value or precision) [20, 21]. While a recent study demonstrat-
ed breast MRI as high-performing in the screening setting for
average-risk women, with specificity of 100%, implementa-
tion is hindered by cost, resources, and imaging time [22, 23].

Next generation CAD utilizing deep CNNs offers a prom-
ising approach for optimizing mammographic performance.
Here we demonstrate stand-alone performance of a deep
CNN-based algorithm which achieves AUC values superior
to those described in expert interpretations of digital mam-
mography and comparable to those described for digital breast
tomosynthesis [17, 18, 23]. Our results were obtained by ap-
plying a novel false-color enhancement technique to CLAHE
processed mammography images and utilizing a dual deep
CNN engine capable of considering whole-image and ROI
specific mammography features. This approach is intuitively
aligned with how radiologists assess mammograms: first glob-
ally and then Bzooming in^ to analyze discrete regions.
Indeed, some features of malignancy, such as regional archi-
tectural distortion or asymmetry are best revealed on the im-
age level; whereas others, such as micro-calcifications or
masses, are best seen in magnification.

Further investigation will assess additional features provid-
ed to the random forest as well as location dependent perfor-
mance using metrics such as FROC (free-response ROC
curve) and AFROC (alternative FROC). In addition, we hope

Scheme 2 Final classification receiver operator characteristic curve
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to more closely examine CNN performance stratified by de-
mographic attributes, such as breast density, age, and type of
abnormality. Finally, we plan to perform more rounds of hard
negative mining and consider the reliability and reproducibil-
ity of the deep CNN models.
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