

Chappell, DDG.¹; Brown. JM¹; Sanders. V¹; Boylan. JM²; Turton. J²; Threlkeld. J⁴; Sampson. M³; Santos. T³; Guy. A³; Curtis. EM³; Chisholm. C⁴., Gerety. EL¹., Eckert. R⁵; Poole. KES¹; Stone. M²; Harvey. N³; Javaid, MK⁵ 1 Cambridge University Hospitals NHS FT, Cambridge, UK | 2 Cardiff and Vale University Health Board; Cardiff, UK | 3 MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK | 4 Bradford Teaching Hospitals NHS FT, Bradford, UK | 5 NDORMS, University of Oxford, Oxford, UK

Background

- Fewer than 30% of vertebral fragility fractures (VFs) are reported on routine clinical CT scans by radiologists.
- As VF patients are often at very high risk of future fractures, an automatic VF identification tool would lead to a major improvement in FLS performance and clinical impact.
- HealthVCF is an automated VF detection tool that highlights

Methods

- 500 consecutive CT scans were retrieved by 4 sites from 2017 that included imaging of the spine.
- All patients were assessed for VFs from sagittal imaging by a clinician with local radiologist adjudication.

fractures from CT with the aim of aiding radiologists to report fractures.

Objective

- To validate Nanox-AI HealthVCF's ability to detect vertebral fractures from routine CT scans.
- For each scan, the clinician recorded if a VF was present, were VF(s) mentioned in the clinical report, and did the clinical report use the term 'vertebral fracture'.
- These findings were compared with the outputs from the Nanox-Al model at the 'high specificity' (1 site) and 'balanced' (3 sites) settings.

Results

- CT scans from 2000 patients (49.7% women) were audited from 4 sites. A total of 255 (12.8%) VF patients were identified by the local clinical reader.
- Radiology reports had a sensitivity of 51% and specificity of 100% compared with sensitivity of 79% and specificity of 81.2% in 'balanced' sites and sensitivity of 48.3% and specificity of 98.5% in the 'high specificity' site (see figure 1).
- When comparing scan types, the prevalence of VFs varied from 9.7% for CT Pulmonary Angiogram to 42.7% for CT Abdomen and Pelvis.
- The sensitivity of radiology reports and the Nanox-AI model did not vary significantly between scan types. Between hospitals, the prevalence of vertebral fractures varied from 5% to 17%.

Figure 2: HealthVCF reporting of VFs from CT Abdomen and Pelvis scans.

Figure 1: Results from 'balanced' setting sites.

Disease	Test		Sensitivity: 79.0%
	Y	Ν	Specificity: 81.2%
Υ	132	35	PPV: 34.6%
Ν	249	1076	NPV: 96.8 %

Discussion/Conclusion

- In the real-world setting, opportunistic VF reporting in CT using the Nanox-AI model identified an additional 22.5 patients per 1000 patient scans analysed with important differences by AI setting, scan type and hospital.
- However, radiologist reporting of vertebral fractures remains the gold standard of care due the high false-positive reporting by HealthVCF.

A combined HealthVCF with Radiologist over-read to FLS could improve patient care, although further research is required.